If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+35n-4=0
a = 9; b = 35; c = -4;
Δ = b2-4ac
Δ = 352-4·9·(-4)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-37}{2*9}=\frac{-72}{18} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+37}{2*9}=\frac{2}{18} =1/9 $
| 4n-24=3n+3 | | 2(3x-49)=-x+49 | | 8n+1=7n-20 | | (x)+(x+25)=180 | | 125m-100m+35700=34125-150m | | (x)+(x+25)+(x-16)=180 | | -15x^2-2x+2=0 | | 3x-30=2x+39 | | n+14=8n+56 | | 4b+7=10b+1 | | 9i-7=11 | | 36=6w+6 | | 6n-6=9n-36 | | 15x+12=7x+14 | | 5d-4=4d+7 | | 8x+38=18-12x | | 5n+10=3n+24 | | 9p-8=10 | | 4p+8=5p-11 | | -15=x/2-5 | | 5c-4=11c-10 | | 7n+12=12(I4n+24) | | -2n+19=3n-1 | | -6+2x=-1 | | 3v+6=5v+2 | | 23(y-6)=-(y+2)+1 | | -6=2x=-1 | | 2.3(y-6)=-(y+2)+1 | | 4(3x-5)-2(7-3x)=6*(2x-3)-5(2-3x) | | 21x^2-56x+26=0 | | 4y=5-(-12) | | 24=4(x+7 |